
17

SEQUOIA - FINE-RESOLUTION FERMI CHOPPER SPECTROMETER

SEQUOIA is optimized to provide a high neutron flux at the sample and fine energy resolution. The spectrometer can select neutrons with incident energies from a few hundredths of an electron volt to a couple of electron volts and thus can study excitations over this wide energy scale. An elliptically shaped super-

mirror guide in the incident flight path boosts the performance at the lower end of this range. The sample and detector vacuum chambers provide a window-free final flight path and incorporate a large gate valve to allow rapid sample changeout. A new T₀ neutron chopper blocks

the prompt radiation from the source and eliminates unwanted neutrons from the incident beam line.

SPECIFICATIONS

Moderator	Decoupled ambient water
Source- to-Fermi chopper distance	18 m
Chopper- to-sample distance	2.0 m
Sample- to-detector distance	5.5–6.3 m cylindrical geometry
Incident en- ergy range	10–2000 meV
Resolution (elastic)	1–5% E _i
Vertical detector coverage	⁻ 18–18°
Horizontal detector coverage	-30–60°
oorolago	

Status: Operational

APPLICATIONS

With its capability to acquire data quickly and relate them to three-dimensional momentum transfers, SEQUOIA allows new studies of single crystals and novel systems such as the following:

- High-temperature superconductivity: spin dynamics in superconductors and precursor compounds and incommensurate spin fluctuations at varying doping levels
- Model magnetic systems, such as one-dimensional spin chains and spin ladders, and crossover effects from one- to three-dimensional magnetism
- Excitations in quantum fluids, quantum critical phenomena, and non-Fermi liquid systems
- High-resolution crystal field spectroscopy reaching into the 1-eV range
- Coupling of electronic and spin systems in correlated-electron materials
- Colossal magnetoresistive materials

FOR MORE INFORMATION, CONTACT

Instrument Scientist: Garrett Granroth, granrothge@ornl.gov, 865.805.0631 Instrument Scientist: Sasha Kolesnikov, kolesnikovai@ornl.gov, 865.576.9145 Scientific Associate: Todd Sherline, sherlinete@ornl.gov, 865.773.3157

http://neutrons.ornl.gov/instruments/SNS/SEQUOIA

